当前位置:主页 > 新闻资讯 > 行业新闻 >

不锈钢瓦的腐蚀

时间:2019-01-03 09:52   tags: 行业新闻  

  不锈钢瓦的腐蚀发生原因

  不锈钢瓦的不锈特性是由于钢板表面特殊的钝化保护膜,首先简单介绍一下不锈钢瓦的耐蚀机理,即钝化膜理论。

  所谓钝化膜就是在不锈钢瓦表面有一层以Cr(铬)与氧结合的Cr2O3 (三氧化二铬)为主的薄膜它是在金属表面形成厚度约100万分之数mm的不动态皮膜。由于这个薄膜的存在使不锈钢瓦基体在各种介质中腐蚀受阻,这种现象称为钝化。这种钝化膜的形成有两种情况,一种是不锈钢瓦本身就有自钝化的能力,这种自钝化能力随铬含量的提高而加快。另一种较广泛的形成条件是不锈钢瓦在各种水溶液(电解质)中,在被腐蚀的过程中形成钝化膜而使腐蚀受阻。

  不锈钢瓦对比炭钢或铝耐蚀性突出优秀. 但不是象金或者铂金那样绝对不生锈的金属.

  但受到其他什么原因不动态皮膜受到破坏不能再生的话不锈钢瓦也会生锈,就是腐蚀。一般不锈钢瓦的腐蚀类型分为两类:均匀腐蚀、局部腐蚀,随着不锈钢瓦在人们生活中的普及,派生出了新的腐蚀类型——“锈蚀”。

  有防止浮动体皮膜再生作用的物质有氯离子(Cl)(铅分,漂白剂,聚氯烧毁时的煤烟,盐酸),硫磺氧化剂(汽车,工厂等的燃烧排气Gas,温泉蒸汽,火山烟,火山灰)等.煤烟,粉尘等附着到不锈表面,可促进氯离子等的附着力或防碍对于表面的氧化供应.还有铁粉等的异种金属附着到表面,可使金属本身变成锈,也使不锈钢瓦自身也生锈. 二、腐蚀原因物质及作用

  1、均匀腐蚀

  均匀腐蚀是指裸露在腐蚀环境的金属表面全部发生电化学或化学反应,均匀受到腐蚀。这种腐蚀也可以测量其进行速度,也可以预测以后的腐蚀程度,设定安全系数,设定材料的使用期,所以它是众多腐蚀种类中最不危险的腐蚀,通常均匀腐蚀的腐蚀程度按照重量、厚度减少的多少来衡量。除了特殊环境以外,不锈钢瓦的均匀腐蚀的速度极低,使用寿命长,维护费用低。

  如果在使用过程中要求保持镜面或尺寸精密的设备应选用1-3级的不锈钢瓦;要求长期不漏或要求使用年限的设备,应选用2-5级;对于检修方便或寿命不需很长的设备可选用4-7级的不锈钢瓦。对于年腐蚀率超过1mm的一般不选用。

  2、局部腐蚀

  局部腐蚀是指在腐蚀介质的作用下,钢的基体在特定的部位被快速腐蚀的一种腐蚀形式。这种腐蚀对设备的威胁极大,因此必须根据介质条件正确地选用不锈钢瓦。局部腐蚀主要类型有:晶间腐蚀、点蚀、应力腐蚀、锈蚀等。

  1) 应力腐蚀龟裂(Stress Corrosion Cracking)

  SCC:是指在一定的腐蚀介质中,在张应力的作用下发生的以裂纹扩展方式与腐蚀有关的断裂。是局部腐蚀中最常见,危害最大的一种。

  裂纹特征:起源于表面,分布具有明显的局部性;断口形貌呈脆性断口。

  影响SCC因素:腐蚀介质(CL-);应力(敏感度取决于实际应力/屈服强度);温度;组织和成分(高Cr铁素体不锈钢瓦不敏感;低Ni敏感,高Ni不敏感)

  应力腐蚀的外貌是沿设备厚度的垂直方向呈树枝状的腐蚀,使设备开裂。产生应力腐蚀的条件除介质条件外,与设备在制造过程产生拉伸应力有直接关系。发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉等。

  提高不锈钢瓦耐应力腐蚀的措施:一是提高耐应力腐蚀指标△Ni;二是对设备进行消除残余应力的热处理。

  给腐蚀环境里的有腐蚀性的金属施加应力时应力和腐蚀的协同作用下发生脆性龟裂,这腐蚀是奥氏体钢特有现象,主要在抗拉应力的90°方向发生,龟裂的传播速度非常快,部件的破坏在2~3日内或数小时内发生,所以结构物采用奥氏体系Wire来支撑的环境里氯的浓度高时非常危险,有必要注意。

  A、 腐蚀发生方法

  PREN:

  抗点蚀当量(PREN)是评价耐点蚀性的参考,不能绝对化。因为热处理更为关键(固熔)。 抗点蚀当量(PREN)=Cr%+3.3(MO+0.5W)%+16N% PREW:

  抗点蚀性当量(PREW)由满足40≤PREW≤67的下式来限定: PREW=wt%Cr+3.3(wt%Mo+0.5wt%W)+30wt%N

  铬、钼和氮对抵抗局部腐蚀能力的综合影响,经常用经验公式WS(Wirksumme)来表示。 WS(PRE)= 铬%+3.3×钼%+16×氮%

  式中的WS值一般被称之为“耐点腐蚀能力指数(PRE)”。所以也常常用PRE来表示。公式所给出的氮的系数16是最经常使用的。但据文献报道也有采用其它系数的,比如Mannesmann研究院的Herbsleb博士就建议使用30。诸如钨等其它成分对防腐性能也有积极影响。按重量百分比的算法计算,其效果约为钼的一半。为了进行比较,同时用16和30作为PRE 公式中氮的系数为下表中的一些钢种计算PRE值。结果在下表中给出。

  A、晶间腐蚀的定义

  晶间腐蚀是产生在晶粒之间的一种腐蚀形式。产生晶间腐蚀的不锈钢瓦,受到应力作用时,晶间腐蚀由表面开始而逐渐向内部发展。这种腐蚀对于承受重载零件危害很大,因为它不引起零件外形的任何变化而使品粒之间结合遭到破坏,严重降低其机械性能,强度几乎完全损失,往往使机械设备发生突然破坏,是不锈钢瓦最危险的一种破坏形式。晶间腐蚀可以分别产生在热影响区、焊缝或熔合线上。在熔合线上产生的晶间腐蚀又叫刃状腐蚀。

  晶间腐蚀多发生在450℃~850℃时工作、中等浓度硫酸、高浓度硝酸和有机酸等酸性介质中发生及没有固熔的不锈钢瓦。腐蚀形式是不锈钢瓦基体的晶粒边界受到加速腐蚀。产生这种腐蚀的原因是晶界处贫铬造成的。

  B、晶间腐蚀产生的原因

  现以18—8型奥氏体钢(例如1CrI8NI9)来说明晶间腐蚀产生的过程。室温下碳元素在奥氏体的溶解度很小,约0.02-0.03% (质量分数),而一般奥氏体钢中含碳量均超过0.02-0.03% ,因此只能在淬火状态下使碳固溶在奥氏体中,以保证钢材具有较高的化学稳定性。但是这种淬火状态的奥氏体钢当加热到450℃~850℃或在该温度下长期使用时,碳在奥氏体中的扩散速度大于铬在奥氏体中的扩散速,当奥氏体中含碳量超过它在室温的溶解度(0.02-0.03%)后。碳就不断地向奥氏体晶粒边界扩散,并和铬化合, 析出碳化铬Gr23C6。但是铬的原子半径较大,扩散速度较小,来不及向边界扩散,晶界附近大量的铬和碳化合形成碳化铬,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部, 而是来自品界附近。结果就使晶界附近的铬含量大为减少, 当晶界含铬量小于l2% (质量分式)时,就形成“贫铬区”。造成奥氏体边界贫铬, 当晶界附近的金属含量铬量低于l2%时就失去了抗腐蚀的能力,在腐蚀介质作用下,就在晶粒之间产生腐蚀即产生晶间腐蚀。从上可知,晶间腐蚀产生的根本原因是由于晶粒边界形成贫铬层造成的。

  当加热温度小于450℃或大于850℃,不会产生晶间腐蚀。因为温度小于450℃ 时, 由于温度较低, 不会形成碳化铬。当温度超过850℃ 时, 由于温度扩散能力增强,有足够的铬扩散至晶界和碳结合,不会在晶界形成“贫铬区”:所以产生晶间腐蚀的温度是在450℃-850℃之间,这个温度区间就成为产生晶间腐蚀的“危险温度区” (又称“敏化温度区”).其中尤以650℃为最危险。焊接时,焊缝两侧处于“危险温度区”的地带最容易发生晶间腐。即使是焊缝由于在冷却过程中其温度也要穿过“危险温度区”,所以也会产生晶间腐蚀。

  (2)冷却速度的影响

  冷却速度的影响不锈钢瓦焊接接头在“危险温度区”停留在时问越短,接头的耐晶问腐能力越强。所以不锈钢瓦焊接时,快速冷却是提高抗晶间腐蚀的重要手段。

  (3)含碳量的影响

  碳是造成晶体间腐蚀的主要元素,碳含量在0.08%以下时,能够析出碳的数量较少, 碳含量在0.08% 以上时,能够析出碳的数量迅速增加。随着不锈钢瓦中含碳量的增加,在晶界生成的碳化铬随之增多,结果就使得在晶界形成“贫铬区” 的机会增多, 导致产生晶间腐蚀的倾向增加,所以碳是抗晶间腐蚀最有害的元素。

  奥氏体不锈钢瓦根据含碳量的不同,分成三个等级:一般含碳量(toe <0.14%)、低碳级

  (toe<0.06%)和超低碳级(toe<0.03%),因为室温时,奥氏体中能溶解最大的碳,其质量分数为0.02% ~03% ,所以超低碳奥氏体不锈钢瓦如果材料化学成份合格原则上就不会产生晶间腐蚀, 如00Crl9Ni10、等。焊接这类钢时, 应该采用超低碳不锈钢瓦焊丝,如H00Cr21Ni10。

  (4)金相组织的影响

  不锈钢瓦的金相组织如果是单相奥氏组织体,则其抗晶间腐能力较差。如果组织中同时还有一定数量的铁素体存在,形成奥氏体加铁素体的双相组织,会大大提高抗晶间腐的能力。

  组织的焊缝由于柱状晶发展较快, 晶间夹层厚而连续,析出碳化物后,贫铬区贯穿于晶粒之间,构成侵蚀性介质的腐蚀通道。双相组织的焊缝, 由于树枝晶粒打乱了柱状晶的生长,晶间夹层分散而不连续,并且由于铁素体中铬的质量分数远高于奥氏体,碳化铬等化合物优先在铁素体的边缘以内析出,因而不致在晶界形成贫铬区。即使形成了贫铬区,也容易从临近的高铬铁素体中,及时得到铬的补充。因此这种双相组织会大大提高抗晶间腐的能力。

  (6)其它元素的影响

  如在不锈钢瓦中的加入钛、铌等与碳的结合能力比铬更强的元素,能够与碳结合合成稳定的碳化物,可以避免在奥氏体中形成贫铬区。这些元素称为稳定剂,并且钛和铌还是形成铁素体的元素,加入后会促使形成双相组织。所以,通过添加这些元素也可以减少晶间腐蚀的产生。

  D晶间腐蚀的防止方法

  为了防止晶界贫铬提高抗晶间腐蚀能力,主要有两个办法:一是降低钢中的碳含量≤0.03%的超低碳不锈钢瓦;二是向钢中添加钛或铌,铌、钛(Nb、Ti):是强碳化物形成元素,能提高钢的耐晶间腐蚀能力。但碳化钛对不锈钢瓦的表面质量有不利影响,因此在表面要求较高的不锈钢瓦中一般通过添加铌来改善性能。

  N在Cr-Ni奥氏体不锈钢瓦和双相不锈钢瓦中是一种无价且非常有益的合金元素。对氮的强化作用,降低钢的晶间腐蚀敏感性,改善钢的耐蚀性,特别是改善钢的耐点蚀等方面的机理,正在进行深入的研究工作。几种控氮和氮合金化的Cr-Ni奥氏体不锈钢瓦已结合工程需要投入了批量生产和应用 综上所述,我们可以从以下几个方面着手加以控制和

  (1)控制含碳量

  通常控制基本金属和焊条的含碳量在0.08% 以下,如0Crl8Ni9Ti钢板,E0—19—10—15、E0—19—10Nb一15焊条等。

  另外,若奥氏体钢中的含碳量小于0.02-0.03% 时,则全部碳都溶解在奥氏体中,即使在450℃-850℃加热也不会形成贫铬层,故不会产生晶间腐蚀。通常所说的超低碳不锈钢瓦(如

  00Crl9Ni10、00Crl7Ni14M02、E00—19—10—16焊条)含碳量小于0.03% ,因此不会产生晶间腐蚀。

  (2)添加稳定剂

  在钢材和焊接材料中加入钛、铌等与碳的亲和力比铬强的元素,这些元素能够与碳结合成稳定的碳化物,从而避免在奥氏体晶界造成贫铬,对提高抗晶间腐蚀能力起十分良好的作用。常用的不锈钢瓦材和焊接材料都含有钛和铌, 如2Crl8NilMo2Ti钢材、E0—19—10Nb一15焊条、H0Crl9Ni9Ti焊丝等。